Cholla_PM: Dual Energy Eta Beta and Pressure Jump
The simulations are \(128^3\) and 50Mpc.
Dual Energy Parameters: \(\eta=0.005\) \(\beta_0 = 0.25\) \(\beta_1 = 0.0\)
Shock Detection
Pressure Jump:
From Fryxell 200 the Pressure Jump Condition for shock detection is:
\[\frac{\left|\langle P\rangle_{i+1}^{n}-\langle P\rangle_{i-1}^{n}\right|}{\min \left(\langle P\rangle_{i+1}^{n},\langle P\rangle_{i-1}^{n}\right)}> \alpha \gamma \frac{\left|\langle\rho\rangle_{i+1}^{n}-\langle\rho\rangle_{i-1}^{n}\right|}{\min \left(\langle\rho\rangle_{i+1}^{n},\langle\rho\rangle_{i-1}^{n}\right)}\]Their implementation uses \(\alpha = 0.1\)
To ignore fluctuations due to noise a condition in the density is also applied:
\[\frac{\left|\langle\rho\rangle_{i+1}^{n}-\langle\rho\rangle_{i-1}^{n}\right|}{\min \left(\langle\rho\rangle_{i+1}^{n},\langle\rho\rangle_{i-1}^{n}\right)}<0.01\]Phase Diagram
Row 1: Without Pressure Jump Condition
Now Using Pressure Jump condition:
Row 2: Using \(\alpha=0.1\)
Now only using the Total Internal Energy if \(U_{total} > U_{advected}\)
Row 3: Using \(\alpha=1.0\)
Row 4: Using \(\alpha=10.0\)
Chemistry Projection
No Pressure Jump Condition
Using Pressure Jump Condition \(\alpha=10.0\)
Power Spectrum
No Pressure Jump Condition
Using Pressure Jump Condition \(\alpha=10.0\)